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Abstract
We have been creating large-scale manual word alignment corpora for Arabic-English and Chinese-English language pairs in genres
such as newsire, broadcast news and conversation, and web blogs.We are now meeting the challenge of word aligning further varieties
of web data for Chinese and Arabic dialects. Human word alignment annotation can be costly and arduous. Alignment guidelines may
be imprecise or underspecified in cases where parallel sentences arehard to compare — due to non-literal translations or differences
between language structures. In order to speed annotation, we examinethe effect that seeding manual alignments with automatic aligner
output has on annotation speed and accuracy. We use automatic alignment methods that produce alignment results which are high
precision and low recall to minimize annotator corrections. Results suggest that annotation time can be reduced by up to 20%, but we
also found that reviewing and correcting automatic alignments requires more time than anticipated. We discuss throughout the paper
crucial decisions on data structures for word alignment that likely have asignificant impact on our results.
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1. Introduction

Manual word alignment corpora are word aligned parallel
texts (often called bitexts). They are intended to serve as
gold standard data for training and evaluation of automatic
word alignment tools. Such tools in turn are essential in
machine translation systems as orginally developed by
(Brown et al., 1990). Word alignments are used in both
phrase-based and syntax-based machine translation. Word
alignments can also be useful in construction of bilingual
dictionaries.

Manual word alignment can be an expensive, time consum-
ing process, especially given the data volumes produced
at organizations such as the Linguistic Data Consortium.
A portion of the motivation of the current research is to
control costs for this type of corpus development. Over
a three-year period, annotators at the Linguistic Data
Consortium (LDC) aligned approximately 2.1 million
source tokens each of Arabic-English and Chinese-English
parallel texts for the GALE program. This total includes
word alignments on parallel treebanks of Arabic-English
and Chinese-English of around a half million source tokens
each (Li et al., 2010). This represents hundreds of hours
of annotator time per week during peak periods. Hence
finding ways to aid manual annotation represents a large
potential cost savings. Eliminating routine, redundant
annotation can also free up annotator attention for more
challenging annotation scenarios.

Attempting to use automatic tools to bootstrap manual
annotation is by no means a new notion in many areas
of computational linguistics. For treebank annotation,
parsers typically make an initial pass at analysis that is then
corrected by manual annotation, such as when annotating
the Arabic Treebank (Maamouri et al., 2008) or English

Treebank (Marcus et al., 1993). Work has also been done to
bootstrap parallel treebanks for German-Swedish (Volk and
Samuelsson, 2004). The result is a feedback loop whereby
the manual annotation trains the parser, enhancing its
accuracy, which in turn aids in further corpus development.
Examples of bootstrapping linguistic annotation in other
areas of computational linguistics include semantic role
labeling (Stevens, 2007) and sentiment analysis (Abden-
nadher et al., 2007). Indeed, this feedback loop method
of bootstrapping annotation has been generalized to using
machine learning to reduce data annotation time for many
areas outside natural language processing (Schreiner et al.,
2006).

Manual word alignment is an elaborate process; annotation
guidelines can be dozens or hundreds of pages long.
Human translators and in fact machine translation systems
do not typically use words as the basis of translation but
rather phrases, sentences, or larger units, and hence word
alignment is often less natural than phrasal alignment. Due
to structural differences between languages, one-to-one
alignments are not always possible, leaving some words
untranslated or standing in many-to-many correspon-
dences. Hence, as will be demonstrated herein, even
with dozens of pages of guidelines to instruct annotators,
annotation agreement often tops out around 95% and can
dip down to 85% for some genres. (Graca et al., 2008)
report an average of 91.6% annotator agreement across
several language pairs for their manual word alignment
annotation.

The central question we attempt to address is whether using
automatic alignments (we will term these “prealignments”)
can produce a demonstrably faster manual annotation
result, and if so by how much? At the outset of this
process, it was unclear how annotators would respond to



the task of manual correction of automatic aligner output.
Are the annotators more likely to simply accept default
alignments provided to them at the expense of correctly
interpreting annotation guidelines? How long does it take
to review (and if necessary correct) prealignments versus
word aligning clean parallel texts from scratch?

The paper is organized as follows. In Section 2. we begin
by introducing several automatic aligners and their relative
strengths and weaknesses. We must necessarily comment
on the data structures used by the aligners; strangely, each
data format is not capable of the capturing the same set of
relationships and hence there do not exist bijective relation-
ships between individual alignment formats. The distinct
data formats affect measuring alignment performance, and
in Section 4. we have related comments on measuring an-
ntator agreement in word alignment. In Section 5. we show
the results of two small-scale test runs of our bootstrapping
annotation on Chinese-English and Arabic-English parallel
texts. Section 6. discusses the ongoing production run of
this system for large scale alignment annotation and addi-
tional complications. Section 7. discusses future plans and
concludes the paper.

2. Automatic aligners
GIZA++ (Och and Ney, 2003) has for several years been
the baseline tool against which to compare all advances in
word alignment. It implements IBM and HMM models.
GIZA++ allows aligning one token from the source
language to multiple tokens in the target language, i.e.
one-to-many alignments, but does not allow multiple
tokens from the source language to align to the same
target token. Due to this asymmetry, running GIZA++
with source and target languages swapped produces
different alignments. Because we desire a high level
of precision for prealignments, we run GIZA++ twice,
alternating the order of source and target languages, then
take the fine intersection of the resulting alignments.
The intersection necessarily contains only one-to-one
alignments due to the restrictions of the GIZA++ struc-
tures. A variant of GIZA++ is MGIZA++, a derivative
of GIZA++ which allows users to save trained model states.

The Berkeley Aligner (Liang et al., 2006) implements
recent advancements in word alignment and allows both
unsupervised and supervised use. In this context, super-
vised means that the aligner is trained with gold standard
alignments. Unsupervised indicates that the training is
only based on parallel corpora without alignments. It is an
extension of the Cross-EM word alignmer. We found the
Berkeley aligner useful because it allows for supervised
training, enabling us to take advantage of previous corpora
we have aligned.

We also considered using other automatic aligners. K-
vec++ was an early implementation of the K-vec algorithm
(Fung and Church, 1994). Unlike some other unsupervised
algorithms, K-vec did not require that the input be sentence
aligned, only that it be tokenized. The source and target
documents are each divided into k partitions and each

token is associated with a k-dimensional vector of binary
values, with a 1 indicating the partitions in which the token
occurs and a 0 indicating partitions in which it does not.
Vectors for tokens from the source and target languages
are compared using statistical measures of similarity, and
tokens with highly similar vectors are aligned. K-vec
did not support phrasal alignments, only correspondences
between individual tokens. Fung and Church limited the
K-vec algorithm to investigating words which occurred
with a frequency between 3 and 10 in order to avoid con-
sidering too many pairs or pairs with two few occurences
for statistical significance, but such bounds clearly do not
scale to large data sets.

For both the Chinese-English and Arabic-English pilot pre-
alignment, we used GIZA++ to generate word alignments,
implementing IBM and HMM models which bootstrap
one another. GIZA++ is run end-to-end twice, alternating
ordering of the source and target languages. We then
take the “fine” intersection of the proposed alignments.
Section 4. has details about our distinction between “fine”
and “coarse” alignment intersections. For large scale
implementation of the prealignment method we use the
Berkeley Aligner in order to leverage our existing manual
annotations to increase automatic aligner accuracy.

The ITG model that implemented in the supervised variant
of the Berkeley Aligner is resource intensive. The model
grows with respect to the number of tokens per sentence. In
practice, we have had little success using Berkeley Aligner
with sentences longer than 40 tokens due to insufficient
memory even after allocating memory to the Java virtual
machine.

As a solution we have explored splitting longer sentences,
running supervised alignment, and then concatenating the
sentences back together. In the interim we limited our cor-
pus to shorter sentences. Accordingly, reported F-scores
don’t reflect Berkeley Aligner’s performance on the cor-
pus as a whole and hence are artificially inflated. We are
more concerned with generating high precision prealign-
ments than achieving high recall, but the sentence length
issue further decreases recall.

3. Word alignment data formats

Each word alignment corpus is produced differently de-
pending upon input languages and annotation guidelines,
but how the alignments are represented in a data format
can also vary. Disregarding the ramifications of alignment
structures may lead to poor performance, inappropriate de-
sign, and misinterpretations of others’ work.

3.1. Basic alignment data structure

GIZA++ produces one-to-one or one-to-many alignments
but it does not posit many-to-one or many-to-many rela-
tionships. In other words, GIZA++ strangely does not treat
the two languages symmetrically, and this asymmetry is
inherent in its data representation, i.e. even if the aligner
were to posit a many-to-many alignment, the data format



cannot accommodate this.

The Berkeley Aligner (Liang et al., 2006) lists all
alignments as one-to-one. However, unlike GIZA++,
many-to-many representations can be inferred by post-
processing alignments sharing common tokens to create
many-to-many alignments. For instance, for tokensa1,
a2 in language A andb1 in language B, if we havea1-b1

(token a1 is aligned tob1) and a2-b1, then we can say
equivalently that these two alignments are rather a single
alignment,a1,a2-b2.

The LDC Word Aligner allows for one-to-one or many-
to-many alignments but with one caveat: our annotation
tool and data release format stipulates that ifa1-b1, a1-b2,
anda2-b2, then necessarily it must be thata2-b1. In other
words, if we consider a bipartite graph where tokens are
vertices we require all connected components of the graph
(alignments) to be completely connected subgraphs where
all words are aligned to each other.

The LDC constraint requiring completely connected
subgraphs has the side effect of enhancing annotator
agreement. This is because once annotators have decided
which tokens will comprise an alignment, they cannot
choose anything but to completely link all component
tokens of the alignment. By restricting choices agreement
necessarily increases. Hence the LDC data type and
GIZA++ share the property that not all alignment scenarios
may be represented though they differ in the particulars of
which alignments fail to be represented. Hence it is the
case that the Berkeley data structure is the most general of
the three described here.

Figure 1: On the left: connected sub-components, not com-
pletely connected. On the right: completely connected.

3.2. Alignment link types

LDC word alignment corpora generally distinguish at a
minimum betweencorrect andincorrect links, wherecor-
rect is selected by default andincorrect is used when the
translation is inaccurate or not literal. Och and Ney (2003)
distinguish betweensure andpossible links; sure links are
links proposed by two or more annotators, whilepossible
links only need to be proposed by at least one annotator.
Yet because the names here are quite similar it is possi-
ble to confuse the two conventions, a dangerous mistake
because an alignment marked as “incorrect” in our conven-
tion should not necessarily be considered “possible” in the
convention Och and Ney use. Furthermore, in our conven-
tion, the link type labels “correct” and “incorrect” are de-

termined by an annotator’s judgment, and it would be prob-
lematic to mistake them for information about agreement
between multiple annotators.

4. Measures of annotator agreement for
word alignment

The word alignment community has not reached full con-
sensus about how to measure accurarcy, and (Ahrenberg et
al., 2000) provides a more-expansive discussion of some of
the issues we address here. As a single statistic we prefer to
use F-measure, which is now common to use instead of an-
notation error rate (AER) (Och and Ney, 2003). F-measure
is defined as the harmonic mean of precision and recall:

F =
2 ∗ precision ∗ recall

precision + recall

For bootstrapping manual word alignment with prealign-
ments, it is important to increase precision at the expense of
recall because recall, where annotators must correct an in-
correct alignment, is more costly than creating an alignment
where one did not previously exist. There is a certain hu-
man task of convincing annotators that prealignments can
be reliable and accurate. Hence for this task we wish to
optimize with respect to theF0.5 measure which weights
precision more heavily than recall for the task.Fβ is a gen-
eralization of F-measure and is be defined as:

Fβ =
(1 + β2) ∗ precision ∗ recall

(β2 ∗ precision) + recall

In this equation beta represents how heavily recall is
weighted relative to precision. TheF0.5 measure thus
weights recall as being half as important as precision in
determining the score.

Because the LDC data format allows many-to-many
alignments, we must explain how precision and recall are
measured. Precision is the cardinality of the intersection
of proposed alignments with gold-standard alignments
divided by the cardinality of the gold-standard alignments.
In the case of many-to-many alignments, if two alignments
share constituents but are not identical, they do not ap-
pear in the intersection. However, if first many-to-many
alignments are broken up into their component one-to-one
alignments before the intersection is taken, the intersec-
tion is non-empty. We refer to these as coarse and fine
intersections, respectively. Using fine intersections results
in higher precision, recall, and F-measure. As systems
only allowing one-to-one alignments by definition use
fine intersection, we also use fine intersections for easy
comparison.

In the context of annotation error rate, precision and recall
definitions can be amended based on the notion of “sure”
and “possible” links as discussed earlier. For precision, a
proposed link is considered a match if it coincides with
either a sure or possible link. In measuring recall, misses
on possible links do not detract from the overall score
because all annotators do not agree on possible links,
by definition. We do not use these amended measure



for precision and recall because we do not use sure and
possible, but it must be noted such conventions exist to
avoid possible confusion.

5. Using automatic word alignment to seed
manual alignment

To understand the effect of automatic alignments on man-
ual annotation, it would be ideal to understand (a) how long
an annotator must take to verify prealignments and (b) how
long it takes to change incorrect prealignments. If either
of the two above is too time consuming, any advantage
gained by the annotator creating fewer alignments is offset.

5.1. Chinese experiment

Using approximately 200,000 tokens of Chinese newswire
parallel text gathered as part of the GALE program as
training for GIZA++, we produced alignments on four files
of 1,000 source tokens each. (We specifically selected
files which, when truncated to exactly 1,000 words, had
the end of the file coinciding with a sentence boundary.)
The precision of the prealignments produced by GIZA++
compared to gold standard annotation was high, ranging
between 90-93%. As stated earlier, higher precision cannot
be realistically expected, as this precision approaches an
upper limit based on bounds on annotator agreement for
word alignment that have been observed at the Linguistic
Data Consortium and elsewhere (Graca et al., 2008).
However, the recall score using this technique for GIZA++
is quite low, around 30%. The primary reason that recall
is so low is that we take the intersection of forward and
backward GIZA++ alignments (i.e. Chinese-English and
English-Chinese, as directionality matters). As discussed
earlier, this eliminates many-to-one and one-to-many
alignments proposed by GIZA++ due to the nature of
the GIZA++ data format. However, we have no desire
to increase recall at the expense of precision because the
penalty for correcting incorrect prealignments is high.

After creating prealignments on four files, we gave each of
two annotators four files: two empty and two prealigned
with GIZA++ alignments as described above. For the first
annotator, files 1 and 4 were prealigned; for the second
annotator it was files 2 and 4. Table 1 below gives the
resulting F-measures between annotators and the previous
two-pass annotations that we consider the gold standard.

As can be seen in the table above, annotator agreement
on Chinese newswire texts attained results around 90%.
Comparing human annotator agreement for our task on
identical files (F-measure), it is observed that when both
using GIZA++ prealignments agreement is at .91. The
annotator agreement when not using GIZA++ prealign-
ments is somewhat lower. However, it is premature to draw
any conclusions regarding the effect of prealignments on
annotator agreement at this time.

Turning to annotation speed, in Table 2 we see that in cases
where one annotator started with a GIZA++ file and the

Annotator 1 Annotator 2

File 1 .91 (G) .91
File 2 .87 .91 (G)
File 3 .88 .88
File 4 .87 (G) .86 (G)

Table 1: Annotator agreement using F-measure. (G) in-
dicates files prealigned using GIZA++; otherwise files are
manually aligned. In all cases, F-meausre is based on com-
parison to two-pass human files that were aligned as part
of the GALE program and are treated as the gold standard
here.

other had a blank file, the person with the GIZA file was
always faster, on average here by about 20%. We are cau-
tious about this result and future trials with other annotators
will determine how robust this measure is.

Annotator 1 Annotator 2 Sentences

File 1 50 (G) 55 30
File 2 60 46 (G) 24
File 3 49 45 18
File 4 50 (G) 55 (G) 22

Table 2: Annotation times in minutes for four 1000-token
Chinese files.

A 20% increase in speed is indeed significant, but we
continue to strive for better results. We recognize that
searching for and eliminating incorrect proposed align-
ments is also time consuming; overhead time is required to
understand each sentence and assess prealigned tokens.

Note that File 3 was annotated quickly by both anno-
tators. While each file contained exactly 1000 tokens,
the number of sentences per file ranged from 18 to 30.
This demonstrates a sentence effect — annotation speed
is more closely correlated with the number of sentence
segments than the number of tokens. We posit this is due
to overhead required to understand each sentence. Once
an alignment strategy is determined, tokens are aligned
relatively quickly.

To further improve on our speed gains, we will train our
automatic aligners on more same-genre data produced
by LDC; this is the supervised approach and we use
the Berkeley aligner to achieve these prealignments. It
would also be useful to adopt approaches specific to
Chinese-English language structures to improve alignment
performance.

5.2. Arabic experiment

We only have preliminary data to report for the Arabic-
English experiment. We ran GIZA++ on 164,984 Ara-
bic tokens (corresponding to 201,031 English tokens) of
Arabic-English parallel treebank text. The genre was
broadcast news and was translated manually from Arabic.



The F-measure of the GIZA++ alignments to our gold-
standard (two-pass manual annotation) was .602. In this
case the GIZA++ intersection has almost identical precision
and recall instead of the high precision, low recall that was
found with Chinese. At issue is our data source: we used
parallel treebanks including treebank tokens for alignment.
Treebank tokens include empty category markers (e.g. syn-
tactic traces) which are difficult for GIZA++ to match as
they have no correspondent in the parallel language. We
will re-tune our automatic alignment to obtain high preci-
sion, accepting lower recall as a result due to our focus on
precision.

6. Large scale study

The results of the pilot experiments for Arabic-English
and Chinese-English alignment were promising but were
only based on annotation of 4000 tokens for each language
pair. In some cases annotators may have been annotating
files they had seen previously; another issue in the timing
was that the annotators were specifically being asked to
record times and give feedback on the prealignment files
and they were not blind to details of our methods. To
attain unbiased results, we will measure annotation speed
through the course of large-scale corpus production over
several months.

As part of the Broad Operational Language Technology
program (BOLT), we are expecting to annotate several
hundred thousand tokens. We feel that this data volume
will be sufficient to assess average annotator speed. The
BOLT data pose a particular challenge, however, because
the genres for word alignment are web based: forums,
email, instant messages, tweets, etc. Hence initially we
may be unable to use our training data created during the
GALE program; under GALE the genres were newswire,
broadcast news and conversation, and web blogs. Also,
under BOLT the language pairs we will initially manually
align are Egyptian Arabic-English and Chinese-English.
Hence we may be unable to use supervised training data
and the Berkeley Aligner to produce our prealignments.
We will instead opt to use GIZA++ on unsupervised
parallel texts to produce prealignments, thereby reducing
the F-measure of prealignment prior to manual annotation.
After a certain threshold of data has been manually aligned
from scratch in the new genres and language pairs, this
data may be used to bootstrap supervised prealignments.

As discussed earlier, it is crucial to have annotators believe
that the prealignments are helpful. If using unsupervised
prealignments instead of supervised prealignments results
in sufficient degredation of the prealignment quality, anno-
tators may feel the prealignments are counterproductive. At
best this may result in complaints but at worst annotators
may opt to clear all prealignments in order to start anno-
tation on a fresh file; this would render the prealignment
program useless. Hence it is crucial to work with annota-
tors, listen to their feedback, and demonstrate to them that
the prealignments increase their annotation speed (when it
is the case) in order to gain their trust and support.

7. Further research

There remains much work to be done to push the limits of
how much annotation speed can be increased using pre-
alignments without sacrificing quality. Of chief importance
is ensuring that our automatic alignment techniques are
as high precision as possible. We will continue to tweak
combinations of alignment models in order to hone in
on higher precision. At the Linguistic Data Consortium
we are knowledgable in annotation — writing annotation
GUIs, processing data, writing annotation guideless, etc.
— but we are not experts in machine learning and models
for machine translation. Increasingly we expect to consult
with researchers at other institutions to learn about the
latest developments in supervised and unsupervised word
alignment model training.

In summary, we are encouraged by the modest results
demonstrated thus far. We will continue to refine our auto-
matic alignment techniques in an effort to produce quality
gold standard alignments. If we are able to speed annota-
tion and increase annotator agreement through these meth-
ods, this will increasingly allow annotators to devote their
attention to more interesting annotation. The time savings
will free up resources to create ever more diverse language
resources.
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