# On the creation of a pronunciation dictionary for Hungarian 

Stephen Grimes
stgrimes@indiana.edu
Midwest Computational Linguistics Colloquium UIUC, May 20-21, 2006

## Pronunciation Dictionary?

Consider the word szabadság 'liberty; freedom’

- The ' $d$ ' is pronounced $[t]$ due to voicing assimilation.
- The 'ds' consonant cluster is actually pronounced [cc] due to affrication.
- 'sz' is a digraph
- 'á' uses a diacritic; there are character encoding issues


## Outline for today:

- Motivation for a pronunciation dictionary
- A strange kind of phonology? The relationship between spoken and written Hungarian
- Error identification, deliberate omissions, and future additions
- Applications of a pronunciation dictionary in cross-linguistic study and within Hungarian linguistics


## Motivation: what is it used for?

- Studying properties of the "mental lexicon", phonological neighborhoods, Neighborhood Activation Model
- Phonological complexity
- Phonotactics, phonostatistics
- Statistical models of sonority
- Establishing a markedness hierarchy
- Used in acoustic model for speech recognition
- Interesting when viewed as a phonology problem
- What it's not used for!
- For native speakers or foreigners seeking such as resource, the "Magyar kiejtési szótár" already exists (Fekete, 1995).


## Why Hungarian?

- Agglutinative language with high morpheme::word ratio.
- More inflectional morphemes than English.
- Several computational tools are already available (Kornai, 1986; Halácsy et al, 2004)
- Relatively close relationship between writing and pronunciation allows for this.
- Studying Hungarian is fun!


## The Hoosier Mental Lexicon

- HML (Nusbaum et al., 1984): developed at the Psychology Department at Indiana University
- For ~20,000 English words, HML gives written form, a broad phonetic transcription, and the corpus frequency of the word.
- Additionally, the HML contains data on word familiarity ratings, judged by subjects on a scale of one to seven.


## Goals for Hungarian dictionary

- Correct the majority of sound/symbol discrepancies.
- One-to-one mapping of sound to symbol
- Use ASCII-based alphabet for portability
- Phonetic forms should represent the idealized standard dialect, present day...
- Large vocabulary: 67,000 words
- Include word frequencies

| Orthography | OGOB7 (Szigetvári) |
| :---: | :---: |
| cs | C |
| ch | H |
| dzs | D |
| dz | F |
| gy | G |
| ly | L |
| ny | N |
| sz | S |
| ty | T |
| zs | Z |
| á | A |
| é | E |
| í | I |
| ó | O |
| ú | U |
| ö | w |
| o | W |
| ü | y |
| u | Y |

## Outline for today:

- Motivation for a pronunciation dictionary
- A strange kind of phonology? The relationship between spoken and written Hungarian
- Error identification, deliberate omissions, and future additions
- Applications of a pronunciation dictionary in cross-linguistic study and within Hungarian linguistics


## Changes needed to create dictionary

- historical spelling variants
- digraphs and trigraphs
- phonological rules
a vowel, consonant length alternations
- several types of assimilation
a glide insertion
- morphophonological rules
- imperative forms


## digraphs and trigraphs

Fortunately digraph ambiguity occurs only in compound words.
[zs]
rézsun 'on the slope' (rézsu 'slope', uncommon)
rézsün 'copper hedgehog' (réz 'copper', sün 'hedgehog')
[szs]
sertészsír 'pork grease' (sertés 'pig', zsír 'grease')
kertészsír 'gardener’s grave’ (kertész 'gardener', sír 'grave')
[cs]
lécsín 'liquid beauty’ or 'slat track'
[tty]
hattyúk ‘six hens’ or ‘swans’

## Phonology: assimilation

- Voicing assimilation
- Palatalization
- Affrication
- Nasal place assimilation

NB. Some types of assimilation are marked in the orthography.
/ember + vel/ -> [emberrel]

## Phonology: regressive voicing assimilation

- The voicing feature for a consonant must agree with the voicing feature of a following consonant

Exceptions:

- 1. do not undergo assimilation: h, j, m, n, ny, r
- 2. do not cause assimilation: v


## Phonology: regressive voicing assimilation

| Written Form | Pronounced Form | Gloss |
| :--- | :--- | :--- |
| abszolút | apszolút | 'absolute' |
| joghurt | jokhurt | 'jogurt' |
| olvasd el | olvazsd el | 'read it' |
| népdal | nébdal | 'folksong' |
| kútban | kúdban | 'in the well' |
| húsdaráló | húzsdaráló | 'meatgrinder' |
| kerékgyártó | keréggyártó | 'wheelmaker' |

## Phonology: nasal place assimilation

- A nasal consonant must agree with the place of articulation feature of a following consonant.

| Written Form | Pronounced Form | Gloss |
| :--- | :--- | :--- |
| szénpor | szémpor | 'coal dust' |
| különben | külömben | 'otherwise' |
| szenved | szemved | 'suffer' |
| mondja | monygya | 'she says' |

## Phonology: palatalization

- A coronal stop is palatalized, often in imperative or $3^{\text {rd }}$ singular forms.
- $\{t, \mathrm{~d}, \mathrm{n}\}+\mathrm{j}$-> $\{t \mathrm{tty}, \mathrm{ggy}, \mathrm{nny}\}$

| Written Form | Pronounced Form | Gloss |
| :--- | :--- | :--- |
| látja | láttya | 'he sees it' |
| adjuk | aggyuk | 'we give it' |
| menjen | mennyen | 'he should go' |

## Phonology: affrication

- A plosive and a following sibilant coalesce into an affricate of the appropriate place of articulation. The resulting affricate is usually a long consonant, unless reduced due to being adjacent to another consonant.
- $\{\mathrm{t}, \mathrm{ty}\}+\mathrm{s}->\mathrm{ccs}$

$$
\{t, t y\}+s z->c c
$$

| Written Form | Pronounced Form | Gloss |
| :--- | :--- | :--- |
| váltson | válcson | 'it should change' |
| szabadság | szabaccság | 'freedom' |
| egyszer | eccer | 'once' |
| maradsz | maracc | 'you stay' |

## Phonology: glide insertion

A glide consonant [ $j$ ] is inserted to interrupt hiatus between two vowels whenever one of the vowels is i, í, e, or é.

| Written Form | Pronounced Form | Gloss |
| :--- | :--- | :--- |
| tea | teja | 'tea' |
| szia | szija | 'hello' |
| hiába | hijába | 'in vain' |
| nénié | nénijé | 'the aunt's' |
| dió | dijó $\quad$ [gyó]? | 'walnut' |
| kiöl | kijöl | 'extinguish' |

## Consonant length alternations

- Shortening - Long consonants are produced short before or after consonants
- orrhang [orhang] 'nasal'
- Lengthening (treat these as exceptions?)
- egy [eggy], egyet [eggyet]
- lesz [lessz]
- edz [eddz], bridzs [briddzs] (affects all dz, dzs in coda position)
- Deletion in triconsonantal clusters
- -middle consonant in tri-consonantal sequence can be elided
- -t and d are particularly susceptible to this
- mindnyájan [minnyájan], kezdhetjük [keszhettyük] / [keszthettyük]


## Vowel length alternations

| Written Form | Pronounced Form | Gloss |
| :--- | :--- | :--- |
| ors | örs | patrol |
| gyujt | gyüjt | collect |
| ródli | ródli | sled |
| csúzli | csúzli | slingshot |

## Vowel length phonotactics

- Mid vowels in word-final position
- Typically marked in the orthography
- Exceptions are function words: no (well, [interjection]), ö ([ahh])
- Include phonotactic rule to apply to any foreign words
- High vowels in word-final position
- High vowel exceptions (how are they pronounced)?
- Exceptions?:
- hamu, Pittyu, falu, kenu, kapu, daru, áru, anyu, apu, saru
- menü, eskü


## Some implementation issues

- Coding issues
- Each phoneme needs to be coded for articulatory features and sonority value
- Need morpheme boundaries
- Know word POS (function vs. content words)
- Care must be taken to apply rules in order
- Currently implemented in Perl using regular expressions


## Outline for today:

- Motivation for a pronunciation dictionary
- A strange kind of phonology? The relationship between spoken and written Hungarian
- Error identification, deliberate omissions, and future additions
- Applications of a pronunciation dictionary in cross-linguistic study and within Hungarian linguistics


## Omissions from current version

- Correctly identifying compounds: rézsün, sertészsír [possibly not hard to correct]
- Phonological rules applying only in presence or absence of a morpheme boundary or only to certain parts of speech
- "Slang" pronunciations / truncations:
- asszem (azt hiszem) "I believe (that)"
- nemtom (nem tudom) "I don't know"
- valszeg (valószínuleg) "probably"


## Error assessment

- Two types of errors
- Need to have some notion of precision and recall: due to overlooked cases; rules applied incorrectly
- variability in the language; lack of genuine language standard creates
- How to assign value to correctness?
- random sample of words to two speakers, see how often they agree on correctness?
- Find more crucial examples to check:
- Words containing digraphs, words edited by one of my phonological rules
- egyszer $\rightarrow$ eGSer $\rightarrow$ eTSer $\rightarrow$ eccer


## Future developments

- Will there be standards for phonological lexicons / pronunciation dictionaries??
- Add age of acquisition information or familiarity ratings for each word
- Include subsets of pronounced forms, such as only vowels or only consonants and examine bigrams of these structures
- Include syllable boundaries, CV skeletal structure
- Support for some types of dialectical variation
- Perceptual information: confusion matrices


## Outline for today:

- Motivation for a pronunciation dictionary
- A strange kind of phonology? The relationship between spoken and written Hungarian
- Error identification, deliberate omissions, and future additions
- Applications of a pronunciation dictionary in cross-linguistic study and within Hungarian linguistics


## Phonotactics and probability

## Phonological Complexity (Goldsmith, 2002)



| Fahonology - Phonologicalcomplexity |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Eile Edit Yiew Left window Model Help Type/Token Weblinks Geometry <br>  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
| Phone. | Counts | + Log Pr.. | $\Delta$ | Words | Representation | + Log Prob (b. | Average comr |
| \# | 14508 | 3.049592 |  | kos | \#kos\# | 9.970 | 2.492 |
| e | 9771 | 3.619862 |  | hatás | \#hatAs\# | 15.027 | 2.504 |
| t | 8458 | 3.828052 |  | fos | \#fos\# | 10.072 | 2.518 |
| a | 7264 | 4.047604 |  | feles | \#feles\# | 15.387 | 2.564 |
| I | 7051 | 4.090541 |  | Kés | \#kEs\# | 10.381 | 2.595 |
| r | 5432 | 4.466885 |  | más | \#mAs\# | 10.546 | 2.637 |
| s | 5306 | 4.500744 |  | hat | \#hat\# | 10.598 | 2.650 |
| i | 5066 | 4.567522 |  | felelet | \#felelet\# | 21.380 | 2.672 |
| k | 4758 | 4.658013 |  | szeles | \#Seles\# | 16.188 | 2.698 |
| - | 4551 | 4.722185 |  | hatos | \#hatos\# | 16.391 | 2.732 |
| A | 4527 | 4.729813 |  | ható | \#hatO\# | 13.729 | 2.746 |
| n | 4221 | 4.830784 |  | hallás | \#hallAs\# | 19.226 | 2.747 |
| E | 3870 | 4.956035 |  | koros | \#koros\# | 16.484 | 2.747 |
| m | 3410 | 5.138597 |  | mentes | \#mentes\# | 19.307 | 2.758 |
| g | 2918 | 5.363389 |  | felemás | \#felemAs\# | 22.108 | 2.764 |
| S | 2696 | 5.477548 |  | mesés | \#mesEs\# | 16.629 | 2.771 |
| d | 2540 | 5.563540 |  | kelés | \#kelEs\# | 16.660 | 2.777 |
| z | 2383 | 5.655590 |  | mentés | \#mentEs\# | 19.454 | 2.779 |
| v | 2306 | 5.702976 |  | határos | \#hatAros\# | 22.328 | 2.791 |
| 0 | 1669 | 6.169385 |  | válás | \#VAlAs\# | 16.760 | 2.793 |
| b | 1648 | 6.187652 |  | kelet | \#kelet\# | 16.769 | 2.795 |
| p | 1610 | 6.221308 |  | késés | \#kEsEs\# | 16.769 | 2.795 |
| h | 1594 | 6.235717 |  | felettes | \#felettes\# | 25.181 | 2.798 |
| w | 1447 | 6.375304 |  | has | \#has\# | 11.200 | 2.800 |
| u | 1433 | 6.389330 |  | füles | \#fyles\# | 16.909 | 2.818 |
| F | 1410 | 6.412673 |  | vetés | \#vetEs\# | 16.927 | 2.821 |
| W | 1263 | 6.571514 |  | meló | \#melo\# | 14.110 | 2.822 |
| $N$ | 1083 | 6.793335 |  | felel | \#felel\# | 16.968 | 2.828 |
| J | 986 | 6.928709 |  | ha | \#ha\# | 8.486 | 2.829 |
| I | 943 | 6.993039 |  | hálás | \#hAlAs\# | 16.979 | 2.830 |
| G | 880 | 7092793 |  | czelet | \# Splet\# | 16.9 | 28 |

## Phonological lexicon?

- Neighborhood Activation Model (Luce, 1986; Luce and Pisoni, 1998; Barlow, 2000)
- Probabilistic phonotactics (Vitevitch and Luce, 1999)
- Developing accurate models of phonological similarity (e.g. Kapatsinski, to appear)


## CALCULATE PHONOTACTIC PROBABILITY

Type or copy and paste your data here. Press [Enter] after each line.
cut
$k^{\wedge} t$
$k^{\wedge} t$

The results of your calculation are displayed here. You may copy and paste results to another program for further analysis.
cut
0.00750 .02210 .0660
0.00000 .0027
1.09561 .0027
$k^{\wedge} t$
0.09270 .03920 .0660
0.00430 .0024
1.19791 .0067

Return to Phonotactic Probability Home Page

Clear your Entry

## The Mental Lexicon as a Graph

Work by Mike Vitevitch (unpublished) and Gruenenfelder and Pisoni (to appear)

- Each (phonetically distinct) word is a node
- A link is placed between two words if they differ by exactly one phoneme
- Deletion, addition, or substitution
- Neighbor, as defined by Luce and Pisoni, Landauer and Streeter, Greenberg and Jenkins
- What are the properties of this graph?


## Modeling the Lexicon as a Graph



## D egree Distribution for CVCs

CVC Degree Distribution


## A basis for further development of resources

- Add further items related to phonological lexicon
- Can serve as a basis for developing a morphologically annotated corpus of Hungarian
- Morphological parsers for Hungarian exist
- Using orthographic form, do alignment with the pronunciation dictionary to create a morphologically-annotated pronunciation dictionary.


## Sorting

（－）Alphabetical
Reverse Alphabetical

## Filters <br>  <br> Filter（regular expression）：

## Show Filtered



|  | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | ACceruza | A | C | c | e | I | U | Z | a |  |  |  |  |  |  |  |  |  |  |  |
| 1 | ACmester | A | C | m | e | 5 | t | e | I |  |  |  |  |  |  |  |  |  |  |  |
| 2 | ACmunka | A | C | m | u | n | k | a |  |  |  |  |  |  |  |  |  |  |  |  |
| 3 | AbrAnd | A | b | r | A | n | d |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4 | AbrAndkEp | A | b | r | A | n | d | k | E | P |  |  |  |  |  |  |  |  |  |  |
| 5 | AbrAndos | A | b | I | A | n | d | 0 | 5 |  |  |  |  |  |  |  |  |  |  |  |
| 6 | AbrAndozAs | A | b | I | A | n | d | 0 | $z$ | $A$ | $s$ |  |  |  |  |  |  |  |  |  |
| 7 | AbrAndozik | A | b | r | A | n | d | 0 | $z$ | $i$ | $k$ |  |  |  |  |  |  |  |  |  |
| 8 | AbrAndvilAg | A | b | I | A | n | d | v | i | ｜ | A | $g$ |  |  |  |  |  |  |  |  |
| 9 | AbrAzat | A | b | I | A | z | $a$ | $t$ |  |  |  |  |  |  |  |  |  |  |  |  |
| 10 | AbrAzol | A | b | I | A | z | 0 | ／ |  |  |  |  |  |  |  |  |  |  |  |  |
| 11 | AbrAzolAs | A | b | $r$ | A | z | 0 | 1 | $A$ | $s$ |  |  |  |  |  |  |  |  |  |  |
| 12 | AbrAzolO | A | b | I | A | z | 0 | 1 | 0 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Eommit Deletions

| Morpheme | Type | Part of Speech | Tense | Polarity | Person | Class | Number | Gender | Other Attributes | Examples |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AbrAnd | Root | Noun |  |  |  |  | Singular |  |  | AbrAnd，AbrAndkEp，AbrAnd |
| AbrAz；Abra | Root | Noun |  |  |  |  | Singular |  |  | AbrAzat，AbrAzol，AbrAzolAs，A |
| AC | Root | Noun |  |  |  |  | Singular |  |  | ACceruza，ACmester，ACmunk |
| As | Affix | Noun |  |  |  |  |  |  |  | AbrAndozAs，Abrazolas |
| at | Affix | Noun |  |  |  |  |  |  |  | Abrazat |
| ceruza | Root | Noun |  |  |  |  | Singular |  |  | ACceruza |
| ik | Affix | Verb | Present |  | 3rd |  | Singular |  |  | AbrAndozik |
| kEp | Root | Noun |  |  |  |  | Singular |  |  | AbrandkEp |
| mester | Root | Noun |  |  |  |  | Singular |  |  | ACmester |
| munka | Root | Noun |  |  |  |  | Singular |  |  | ACmunka |
| 0 | Affix | Noun |  |  |  |  |  |  |  | AbrAzol0 |
| ol | Affix | Verb |  |  |  |  |  |  |  | Abrazol，AbrazolAs，Abrazol0 |
| os | Affix | Noun |  |  |  |  |  |  |  | AbrAndos |
| 02 | Affix | Verb |  |  |  |  |  |  |  | Abràndozas，Abriandozik |
| vilAg | Root | Noun |  |  |  |  | Singular |  |  | AbrÂndvilıgg |

## 

## Applications to the study of Hungarian

- Personal work: representation in phonology
- Double or single root node (Vago, 1992; Szigetvári, 2001)
- Complex onsets? (Törkenczy and Siptár, 1999)
- functional load of segments
- "Tiers" in language: vowel, consonant, syllable (weight, stress), sibilant projections (Hayes, pc)
- Sonority Hierarchy (Kornai, 1990)
- Vowel length in present Hungarian (Nádasdy and Siptár, 1998)
- Vowel harmony, vacillation in vowel harmony


## Acknowledgments

Thanks to Péter Szigetvári, Ádám Nádasdy, Péter Rebrus, Stuart Davis, Ken de Jong, and Damir Cavar.

The dictionary available for download for research purposes at
http://mypage.iu.edu/~stgrimes/dict/

